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Epidemiologic and mechanistic evidence suggests that folate is involved in colorectal neoplasia. Some 
polymorphic genes involved in folate metabolism—methylenetetrahydrofolate reductase (MTHFR C677T and 
A1298C), methionine synthase (MTR A2756G), methionine synthase reductase (MTRR A66G), cystathionine β-
synthase (CBS exon 8, 68-base-pair insertion), and thymidylate synthase (TS enhancer region and 3′ 
untranslated region)—have been investigated in colorectal neoplasia. For MTHFR C677T and A1298C, the 
variant allele is associated with reduced enzyme activity in vitro. For the other polymorphisms, functional data are 
limited and/or inconsistent. Genotype frequencies for all of the polymorphisms show marked ethnic and 
geographic variation. In most studies, MTHFR 677TT (10 studies, >4,000 cases) and 1298CC (four studies, 
>1,500 cases) are associated with moderately reduced colorectal cancer risk. In four of five genotype-diet 
interaction studies, 677TT subjects who had higher folate levels (or a “high-methyl diet”) had the lowest cancer 
risk. In two studies, 677TT homozygote subjects with the highest alcohol intake had the highest cancer risk. 
Findings from six studies of MTHFR C677T and adenomatous polyps are inconsistent. There have been only one 
or two studies of the other polymorphisms; replication is needed. Overall, the roles of folate-pathway genes, 
folate, and related dietary factors in colorectal neoplasia are complex. Research priorities are suggested. 

CBS; colorectal neoplasms; epidemiology; folic acid; MTHFR; MTR; MTRR; TS 

Abbreviations: CBS, cystathionine β-synthase; CI, confidence interval; MSI, microsatellite instability; MTHFR, 
methylenetetrahydrofolate reductase; MTR, methionine synthase; MTRR, methionine synthase reductase; OR, odds ratio; 
rpt, repeat; TS, thymidylate synthase. 

Editor’s note: This article is also available on the Web site 
of the Human Genome Epidemiology Network  (http:// 
www.cdc.gov/genomics/hugenet/default.htm). 

Evidence is accumulating for a role of folate in the 
etiology of colorectal carcinomas and adenomas (1). Many 

of the genes involved in folate metabolism are polymorphic 
(2). This paper reviews five polymorphic genes—methyl-
enetetrahydrofolate reductase (MTHFR), methionine syn
thase (MTR), methionine synthase reductase (MTRR), 
cystathionine β-synthase (CBS), and thymidylate synthase 
(TS)—and their associations with colorectal neoplasia. 

Correspondence to Linda Sharp, Epidemiology Group, Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, 
Foresterhill, Aberdeen AB25 2ZD, Scotland (e-mail: L.Sharp@abdn.ac.uk). 
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FIGURE 1. The roles of the methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, cystathionine β-
synthase, and thymidylate synthase genes in the metabolism of folate. 

GENES 

5,10-MTHFR plays a central role in folate metabolism 
(figure 1), irreversibly converting 5,10-methylenetetrahy-
drofolate to 5-methylenetetrahydrofolate, the primary circu
lating form of folate. The substrate is vital for DNA 
synthesis. The product provides methyl groups for synthesis 
of methionine, a decreased pool of which may affect DNA 
methylation. The gene encoding 5,10-MTHFR, MTHFR, is 
located at 1p36.3 (3). 

MTR, which is essential for maintaining adequate 
intracellular folate pools, catalyzes the remethylation of 
homocysteine to methionine, required for production of S
adenosylmethionine, the universal methyl group donor. 
Vitamin B12 is a cofactor in this methylation process. The 
MTR gene is on 1q43 (4). MTR is maintained in its active 
form by MTRR (5), the gene for which, MTRR, is located at 
5p15.3–p15.2. CBS catalyzes the conversion of homocys
teine to cystathionine; vitamin B6 is required in this reaction. 
The CBS gene is at 21q22.3. TS catalyzes the conversion of 
deoxyuridine monophosphate to thymidine monophosphate, 
requiring 5-10-methylenetetrahydrofolate as a methyl donor. 
The TS gene is located at 18p11.32. 

Folate status could potentially be perturbed by polymor
phisms in these genes. Two mechanisms have been proposed 
by which folate deficiency could affect malignancy: 1) by 
causing DNA hypomethylation and proto-oncogene activa
tion and/or 2) by inducing uracil misincorporation during 

DNA synthesis, leading to catastrophic DNA repair, DNA 
strand breakage, and chromosome damage (6). Human 
evidence in support of these mechanisms is limited (6, 7). 

GENE VARIANTS 

This section describes polymorphisms in the genes and 
their functional effects. With the exception of MTHFR, rela
tively few studies have investigated relations between the 
polymorphisms and blood levels of folate and related bio
markers in nondiseased persons. In subjects with medical 
conditions, it is possible that the condition or its treatment, 
rather than the underlying genotype, influences biomarker 
levels. Many studies have been small, with limited statistical 
power. A potential difficulty in interpretation is that any 
observed difference in biomarker levels by genotype may 
not be due to the polymorphism under study but to the pres
ence of another polymorphism. Equally, a failure to observe 
differences in biomarkers by genotype could be due to the 
presence of another polymorphism with opposing functional 
effects. So far, there has been little investigation of the 
effects of combinations of polymorphisms. With regard to 
MTHFR C677T, only red cell folate measured by microbio
logic assay is reliable; results of the radioimmune assay are 
biased (8). There is differential detection by the assays of 
various intracellular folates, the distribution of which is 
related to MTHFR genotype (9). Whether red cell folate 
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results measured by radioimmunoassay are biased for other 
polymorphisms in the folate-pathway genes is not known. 

MTHFR 

Several polymorphisms in the MTHFR gene have been 
reported, and two have been investigated in colorectal 
neoplasia: 1) C→T at nucleotide 677, leading to an alanine 
to valine conversion in the protein (10); and 2) A→C in exon 
7, causing an alanine to glutamate protein change (11, 12). 
These polymorphisms are located 2.1 kb apart. The other 
polymorphisms—T1059C, T1317C, and G1793A (12– 
14)—are not discussed further in this paper. 

For C677T, compared with homozygotes for the common 
variant (CC), heterozygotes have 65 percent of their enzyme 
activity levels in vitro and those who are homozygous 
variant (TT), 30 percent (15). From the microbiologic assay, 
compared with CC homozygotes, heterozygotes have 10 
percent lower and TT homozygotes 18 percent lower red cell 
folate levels (16). Persons with the TT variant also have 
lowered plasma folate and vitamin B12 levels and raised 
homocysteine levels (17, 18). In two studies, the association 
with homocysteine held only when folate status was low (19, 
20); in another, it occurred only when riboflavin status was 
poor (21). Regarding MTHFR and DNA methylation, one 
small study found that DNA from subjects with the TT 
variant had a significantly higher methyl group acceptance 
capacity than DNA from subjects with the CC variant (22), 
but this finding was not confirmed in a larger study (23). In 
292 subjects (66 percent of whom had coronary atheroscle
rosis) selected by MTHFR genotype (187 CC, 105 TT), DNA 
methylation status was affected by genotype among only 
those with lower plasma folate levels; subjects with the TT 
variant who had lower plasma folate concentrations had 
lower methylation levels than all other groups of subjects 
(24). A few studies have investigated MTHFR and uracil 
misincorporation, DNA strand breaks, or genetic instability 
in vivo and in vitro, with inconclusive results (23, 25–27). 

For A1298C, enzyme activity in vitro is decreased in 
homozygotes variants (CC) and, to a lesser extent, in 
heterozygotes compared with those without the variant (11). 
Studies of A1298C and plasma folate and homocysteine are 
inconsistent (12, 28–31), which may be due to methodolog
ical reasons (e.g., non-population-based study, small sample 
size), or it may be that there is a relation that depends on the 
status of folate and/or related nutrients. Enzyme activity in 
vitro for compound heterozygotes (i.e., heterozygotes for 
C677T and for A1298C) is unclear (29). 

MTR 

The A-G polymorphism at position 2756 in the protein 
binding region of MTR replaces aspartic acid with glycine 
(32). Most studies suggest that plasma homocysteine level is 
lower in those with the rarer, G, than the more common, A, 
allele (18, 33–36). One study found significantly higher 
plasma folate levels in GG than in AA subjects (34), but this 
finding was not observed in another study (18). Evidence on 
red cell folate and on plasma vitamin B12 and vitamin B6 is 
very limited (18, 35, 37). 

MTRR 

The A66G polymorphism in the MTRR gene results in the 
substitution of isoleucine with methionine at codon 22 (5). In 
two studies, subjects homozygous for the common allele 
(AA) had elevated homocysteine levels compared with those 
who had other genotypes (38, 39); in a third study, genotype 
was not a significant predictor of homocysteine level (40). 
No associations were found between genotype and serum 
folate, vitamin B6, or vitamin B12 in the single known study 
(38). 

CBS 

Many mutations and several polymorphisms in the CBS 
gene have been reported (41). To our knowledge, the only 
variant investigated in colorectal neoplasia is the 68-base-
pair insertion in the exon 8 coding region. Four studies found 
lower plasma homocysteine levels in persons carrying the 
insertion than in those without, although the difference was 
significant in only one (35, 36, 39, 42). One study suggested 
that the effect was modulated by plasma vitamin B6 concen
tration (43); another suggested an interaction with MTHFR 
C677T (35). The one available study that we know of found 
no associations between genotype and red cell folate or 
plasma vitamin B12 level (35). 

TS 

The TS enhancer region contains a series of 28-base-pair 
tandem repeats. Two repeats (2 rpt) or three repeats (3 rpt) 
are most common, with 3 rpt occurring most frequently. 
More repeats have been observed but are rare (44, 45). In 
vitro, compared with the double repeat, the triple repeat has 
been associated with 2.6-fold greater thymidylate synthase 
expression (46). Among 497 Singapore Chinese, plasma 
folate levels were significantly lower, and homocysteine 
levels nonsignificantly higher, in 3 rpt/3 rpt subjects than in 
those with other genotypes (47). When MTHFR and TS were 
considered together, plasma folate levels were highest (15.3 
nM) in 677CC or 677CT and not 3 rpt/3 rpt subjects, inter
mediate (13.8 nM) in 677CC or 677CT and 3 rpt/3 rpt 
subjects, and lowest (11.6 nM) in 677TT subjects (irrespec
tive of TS genotype). 

The 3′ untranslated region contains a 6-base-pair deletion 
at base pair 1494, the functional consequences of which are 
not known (48). The two polymorphisms appear to be in 
linkage disequilibrium (48). 

Refer to the Appendix for Internet sites pertaining to the 
genes discussed in this review. 

POPULATION FREQUENCIES 

This section includes information on studies reporting 
genotype frequencies in persons without cancer or other 
diseases. Using appropriate Medical Subject Headings 
(MeSH) and text words, we searched MEDLINE, EMBASE, 
and PubMed databases for papers published from 1990 to 
December 2002. Further relevant articles were identified by 
hand-searching reference lists in published papers. MTHFR 
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frequencies are from the Human Genome Epidemiology 
(HuGE) reviews by Botto and Yang (49) and by Robien and 
Ulrich (50). The A1298C data reported by Robien and Ulrich 
are augmented with results from less-studied geographic 
areas and ethnic groups. For the studies tabulated here, 
Hardy-Weinberg equilibrium of the genotype frequencies 
was assessed by using the Pearson χ2 test. 

MTHFR 

There is considerable ethnic and geographic variation in 
the frequency of the C677T variant (49). The TT prevalence 
ranged from around 1 percent in Black populations in the 
United States, sub-Saharan Africa, and South America to 
more than 20 percent in US Hispanics, Colombians, and 
Amerindians in Brazil. TT genotype frequency in White 
populations in Europe, North America, and Australia was 8– 
20 percent. In Europe, there appears to be a trend of 
increasing frequency of the variant from north to south. 
Twelve percent of Japanese were TT homozygotes. 

For A1298C, the CC prevalence in North American 
studies, which included mainly White subjects, was 7–12 
percent (50). In four Hispanic series (n < 90), the frequency 
was 4–5 percent (51–54). In two African-American series, 2 
and 4 percent were CC subjects. In Europe, the prevalence of 
CC ranged from 4 to 12 percent in most studies. In two 
northeast Scotland series of subjects randomly selected from 
general practitioner registers, the frequencies were 15 
percent (95 percent confidence interval (CI): 11.8, 19.2) and 
18 percent (95 percent CI: 9.5, 30.4) (55, 56). In Chinese, 
Japanese, and Hawaiian populations, 1–4 percent were CC 
(50, 54) subjects. In the single studies in Brazil, Morocco, 
South Africa, and Turkey and among Israeli Jews, the 
frequencies were 6 percent (95 percent CI: 2.8, 9.6), 3 
percent (95 percent CI not available), 4 percent (95 percent 
CI: 1.4, 9.9), 6 percent (95 percent CI: 1.7, 14.8), and 13 
percent (95 percent CI: 9.7, 16.5), respectively (31, 33, 57– 
59). 

In some series, but not all, a few persons with three or four 
variant alleles (i.e., 677TT/1298AC, CT/CC, TT/CC) have 
been reported (35, 60–64). 

MTR 

In Japanese, Chinese, and Korean populations, the 
frequency of the GG genotype was 2–3 percent (18, 32–37, 
54, 65–82; Web table 1). (This information is described in 
the first of four supplementary tables; each is referred to as 
“Web table” in the text and is posted on the Web site of the 
Human Genome Epidemiology Network (http:// 
www.cdc.gov/genomics/hugenet/default.htm) as well as on 
the Journal’s Web site (http://aje.oupjournals.org/).) In most 
European series, approximately 3 percent of the subjects had 
the GG genotype. Frequencies from all but two North Amer
ican studies were 1–5 percent. The frequency was 10–11 
percent in these two series—one of White children and their 
mothers in Canada and the other of White persons in Hawaii. 
In the single African-American population, 6 percent (95 
percent CI: 4.3, 8.7) of the subjects had the GG genotype. In 

three studies, the genotype frequencies were not in Hardy-
Weinberg equilibrium (73–75). 

MTRR 

The lowest reported prevalence of GG homozygotes was 
8–10 percent in Japanese in Hawaii and in Hawaiians (5, 14, 
38–40, 54, 83–85; Web table 2). Among 558 subjects in 
Northern Ireland, 12 percent (95 percent CI: 9.1, 14.6) were 
GG homozygotes, but this series was not in Hardy-Weinberg 
equilibrium. In most of the remaining series, the frequency 
was 19–29 percent. Among 97 African Americans and 96 
Hispanics, the frequencies were 42 percent (95 percent CI: 
32.3, 52.7) and 50 percent (95 percent CI: 39.6, 60.4), 
respectively. 

CBS 

Homozygosity for the 68-base-pair insertion is rare in all 
populations (35, 36, 39, 42, 54, 65, 70, 71, 77, 82, 86–98; 
Web table 3). The highest reported frequency was 3 percent 
among Blacks from Brazil and Africa. In four other series, 
the homozygote prevalence also reached 3 percent, but the 
genotype frequencies were not in Hardy-Weinberg equilib
rium (42, 70, 71, 96). In Europe, Australia, and most US 
populations, the frequency of heterozygotes was 8–19 
percent, with most around 13–15 percent. Two Japanese 
series found no heterozygotes. Heterozygosity occurred in 5 
percent (95 percent CI: 1.6, 11.3) of the single Chinese 
series. 

TS 

In three studies in the United Kingdom, and in three of 
mainly White populations in the United States, 19–23 
percent of subjects were 2 rpt/2 rpt (44–47, 99–102; Web 
table 4). The prevalence was 14–20 percent in two African 
and one African-American series and 17 percent among 
volunteers born in four southwest Asian countries living in 
Scotland. Two to 4 percent of two Chinese populations were 
homozygous variant. In all studies, genotype frequencies 
were in Hardy-Weinberg equilibrium. 

In a single study of US Whites, 10 percent (95 percent CI: 
7.7, 12.5) were homozygotes for the 3′ untranslated region 
deletion (102). 

Combinations of genotypes 

Most studies reporting frequencies of combinations of 
genotypes are small (33, 35, 70, 80, 94, 103). In the largest, 
of almost 1,300 males in the United Kingdom, 8 percent 
carried the CBS 68-base-pair insertion and the MTHFR T 
allele; 5 percent of subjects had the CBS 68-base-pair inser
tion and the MTR G allele; and 20 percent carried both the 
MTR G and MTHFR T alleles (35). 

Comments on studies of population frequencies 

Few of the studies reviewed here were population based; 
many relied on convenience samples. Selection and partici-
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pation biases may therefore explain some of the apparent 
variations in genotype prevalence. In a few studies, genotype 
frequencies were not in Hardy-Weinberg equilibrium. 
Although lack of Hardy-Weinberg equilibrium might indi
cate that the series were subject to selection or participation 
biases, there are other reasons why Hardy-Weinberg equilib
rium might not hold, including migration or genotyping error 
(104). Many of the studies are relatively small, so the esti
mates of genotype frequency lack precision. 

In many studies, the ethnic makeup of the participants is 
not described. Most well characterized are White popula
tions in the United States and western Europe. Other popula
tions, geographic areas, and ethnic groups, particularly in 
Africa, Asia (other than Japan), and South America, have 
been less studied. The generalizability from, for example, 
one “Black African” population to another may be limited 
since it is not always straightforward to establish ethnicity 
(105). 

DISEASE 

An estimated 945,000 new cases of colorectal cancer were 
diagnosed worldwide in 2000, and 492,000 persons died 
from the disease (106). Two thirds of incident cases occur in 
developed countries, where it is the third most common 
cancer in males and second most common in females (107). 
There are substantial international variations in incidence 
(108). Sixty to 70 percent of colorectal cancers arise in the 
colon (108). 

Although most evidence is indirect, the majority of 
colorectal carcinomas are believed to develop from adenom
atous polyps (109). Hyperplastic polyps may be precursors 
of some right-sided colon cancers (110). Investigation of the 
first occurrence, and the recurrence, of polyps may reveal 
factors important in early stages of the neoplastic process. 

Fewer than 10 percent of incident colorectal tumors are 
due to hereditary nonpolyposis colorectal cancer and 
familial adenomatous polyposis (111). When these 
syndromes are excluded, there is still familial aggregation of 
cancers and adenomas (112–114), which is unlikely to be 
entirely accounted for by familial clustering of environ
mental factors (115). This information points to the potential 
importance of genetic susceptibility factors, and the interac
tion of these with each other and with environmental factors, 
in the disease causation. 

The studies of Japanese migrants to the United States in 
the 1960s revealed the overwhelming importance of envi
ronmental factors in colorectal cancer etiology (116). Estab
lished risk factors for the disease are shown in table 1 (109, 
117–125). 

Although diet appears to be important in colorectal cancer 
(120), it has been difficult to identify the specific compo
nents involved. Observational epidemiologic evidence 
shows that a high vegetable intake is related to decreased risk 
(120), although recent work suggests that the relation is 
complex (124, 125). Vegetables, particularly green, leafy 
vegetables, are a major source of folate. The majority of 
prospective and case-control studies of serum folate, red cell 
folate, or reported dietary or total folate intake are compat
ible with inverse associations with colon cancer and 

TABLE 1. Environmental factors associated with colorectal 
cancer 

Increasing risk Reducing risk 

Excess weight* Physical activity†


Tobacco smoking‡ Hormone replacement therapy§


Alcohol¶ Aspirin and other nonsteroidal 

antiinflammatory drugs# 

Vegetables** 

* Bergström et al. (117); International Agency for Research on 
Cancer (IARC) Working Group (118). 

† IARC Working Group (118). 
‡ Giovannucci (119).

§ Beral et al. (121); Rossouw et al. (122).

¶ World Cancer Research Fund (WCRF)/American Institute for


Cancer Research (AICR) (120); Cotton et al. (109): results of studies 
are heterogeneous. 

# IARC Working Group (123). 
** WCRF/AICR (120); Terry et al. (124); Flood et al. (125): results 

of studies are heterogeneous. 

adenomas (17, 54, 76, 125–146). There is no consistent asso
ciation between rectal cancer and folate intake (126, 131, 
133–135, 137, 138). One small trial of folic acid supplemen
tation in persons from whom polyps had been removed 
observed a reduced recurrence rate in the supplemented 
group (147). Some studies are compatible with a positive 
association between alcohol intake, which adversely affects 
folate metabolism (148), and colorectal neoplasia (109). A 
“low-methyl diet,” comprising high alcohol intake and low 
folate and methionine (and/or vitamins B6 and B12) intakes, 
has been associated with increased colon cancer risk (126, 
130, 132, 140). 

Internet sites providing data and information on colorectal 
neoplasia are contained in the Appendix. 

ASSOCIATIONS 

This section appraises studies of the polymorphisms and 
colorectal neoplasia risk. These studies were identified by 
using the search strategy described above with the addition 
of disease-specific Medical Subject Headings and text 
words. 

MTHFR 

C677T.   To our knowledge, there have been 10 cancer 
studies: five in the United States, two in the United 
Kingdom, and one each in Australia, Mexico, and Korea (17, 
54, 56, 98, 149–155; table 2). Two included only colon 
cancers (150, 154); the remainder included colon and rectal 
tumors. On the basis of the functional effects of the polymor
phism, and the inverse association between folate status and 
disease, it might have been expected that the variant would 
be associated with increased disease risk. In contrast, seven 
studies were consistent with reduced risk in homozygous 
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variant (TT) subjects compared with homozygotes for the 
common allele (17, 54, 149–151, 153, 154). Observed rela
tive risks ranged from 0.45 to 0.9, although most did not 
reach statistical significance. A significant trend of 
decreasing risk with increasing number of T alleles has been 
reported (54). As has been observed in several meta-analyses 
of gene-disease associations (156, 157), the strongest effects 
were found in the two earliest studies (17, 149). Both were 
nested within cohort studies of predominantly White male 
populations in the United States. These populations were 
likely to have relatively high average intakes of total folate 
as a consequence of comparatively frequent use of vitamin 
supplements (158). 

Although two studies were null overall (98, 155), one 
found an association with genotype in a subgroup (refer to 
the information later in this section; Shannon et al. (98)). In 
the other, although controls were matched to cases on age, 
sex, and general practice, this matching was not taken into 
account in the MTHFR analysis (155). The distribution by 
area of residence, which determines general practice, 
differed between cases and controls; if the prevalence of 
MTHFR variants differed between areas, this lack of adjust
ment could have affected the results. In addition, the TT 
prevalence among controls was lower than that in other 
studies from the United Kingdom. 

In a study in Mexico, a nonsignificantly increased risk in 
carriers of the T allele was reported (152). This finding was 
based on small numbers of subjects, few details were 
provided about subject source populations, and the source of 
the DNA was tumor for cases and blood for controls. 

One study observed that the inverse association with the 
TT genotype was stronger in older (aged 60–84 years) than in 
younger (aged 40–59 years) subjects, but this finding was 
not statistically significant (17). The same study reported 
that the inverse association held for tumors in both the colon 
and the rectum. In terms of location in the colon, Slattery et 
al. (150) found that the TT genotype was associated with 
reduced risk in persons with proximal, but not those with 
distal, tumors. Two studies report results by ethnic group. Le 
Marchand et al. (54) found that the TT genotype was 
inversely associated with risk for subjects of Japanese origin 
and Caucasians, but not for Hawaiians. However, only nine 
Hawaiian subjects had the TT genotype. Keku et al. (154) 
found a modest inverse association among White subjects 
and African-American subjects. 

Shannon et al. (98) stratified their cases into those showing 
microsatellite instability (MSI+) and those not (MSI–). TT 
genotype was associated with significantly raised risk in the 
MSI+ group (unadjusted odds ratio (OR) computed by us for 
TT vs. CC = 2.6, 95 percent CI: 1.08, 5.82) but not in the 
MSI– group. The MSI+ tumors were exclusively in the prox
imal colon and patients tended to be older, both factors that 
might have been expected to result in a reduced risk in TT 
subjects if the above observations regarding age and tumor 
location are true. This apparent inconsistency may be due to 
small numbers, bias, a failure to control for confounders, or 
chance. Further investigation to unravel the independent and 
joint influences of MSI, age, and tumor site is needed. 

We know of six studies that have investigated C677T and 
adenomatous polyps, three in the United States and one each 
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in Japan, Norway, and Mexico (76, 152, 159–162; table 3). 
None found a significant association between genotype and 
risk, which raises the possibility that the MTHFR genotype 
may be relevant only in the later stages of the adenoma
carcinoma process, for example, in determining those 
persons with adenomas who will go on to develop carci
nomas. It is also possible that the inconsistencies between 
the results of the studies of adenomas are due to differences 
between the studies in the subject source populations (i.e., 
whether they included screen-detected or symptomatic 
adenomas) and in the control series (e.g., whether it 
comprised polyp-free subjects). 

In two studies of hyperplastic polyps, no association was 
found between genotype and disease (162, 163; table 4). 

A1298C. Four studies, three in the United States (28, 54, 
154) and one in Scotland (56), have investigated the role of 
A1298C in cancer (table 5). In all, risk was modestly 
reduced in CC compared with AA subjects. Relative risks 
were in the range of 0.6–0.8 and mostly did not reach statis
tical significance. Since this finding is consistent with the 
pattern observed for C677T, it raises the possibility that the 
A1298C-cancer relation is actually due to C677T. 
However, Chen et al. (28) reported that the A1298C result 
was not due to confounding by C677T. In addition, Le 
Marchand et al. (54) found that, compared with 677CC/ 
1298AA persons, those who carried 677T and 1298C had 
the lowest risk. Keku et al. (154) reported that the A1298C
cancer association was stronger among White than 
African-American subjects. 

MTR 

One cancer study and one of adenomas found a slightly 
reduced risk for GG homozygotes (18, 76; table 5). A third 
study found no effect overall but observed an inverse associ
ation between GG and cancer among a subgroup of 
Hawaiian subjects (54). 

MTRR 

In the single study that we know of, in Hawaii, A66G was 
not associated with cancer when the three ethnic groups 
included in the study were analyzed together (54; table 5). 
However, among White subjects, there was a trend of 
borderline significance of increasing risk with increasing 
number of variant alleles (OR for GG vs. AA = 1.9, 95 
percent CI: 1.0, 3.8; p for trend = 0.07). 

CBS 

Heterozygotes for the CBS insertion were twice as 
frequent among controls as among cancer cases in one study 
(OR computed by us = 0.50, 95 percent CI: 0.24, 1.07) (98; 
table 5). Compatible with this finding, the other available 
study suggested that the variant was associated with reduced 
cancer risk (54). 

TS 

In the single study that we are aware of, of the 6-base-
pair deletion and cancer in non-Hispanic White subjects in 
the United States, which was reported in abstract form 
only, subjects with the deletion had a relative risk of 1.40 
(95 percent CI: 0.99, 1.98; p = 0.058) compared with those 
with no deletion allele (164; table 5). In another study of 
men in the United States, again reported only as an abstract, 
2 rpt homozygous persons had a nonsignificantly reduced 
cancer risk (relative risk for 2 rpt/2 rpt vs. 3 rpt/3 rpt = 0.65, 
95 percent CI: 0.38, 1.12) (99). In the single study of 
adenomas, no significant association was found between 
either polymorphism and disease, nor did combinations of 
the two polymorphisms affect risk (102). 

Other diseases 

Genetic variation in MTHFR, CBS, MTR, MTRR, and TS 
has been investigated in other conditions in which folate or 
homocysteine may be involved. Examples are congenital 
anomalies such as neural tube defects, Down’s syndrome, 
and orofacial clefts (5, 40, 49, 84, 165, 166); cancers 
including leukemia and lymphomas, breast, gastric, and 
esophageal tumors (50, 55, 64, 67, 167); cardiovascular 
disease (34, 87, 158, 168, 169); and Alzheimer’s disease 
(170). 

INTERACTIONS 

Gene-environment interactions 

MTHFR C677T.  The gene-environment interactions 
explored have concerned features of the “low-methyl” diet 
and genotype. Four of five studies suggest interactions 
between folate, methionine, or alcohol and C677T in relation 
to cancer. Chen et al. (149) reported that the inverse associa
tion with the TT genotype was greatest among persons in the 
highest tertiles of folate and methionine intake. The results 
of Ma et al. (17), who examined plasma folate, and Le Mar
chand et al. (54), who analyzed food and total folate intake, 
were compatible with this finding. Keku et al. (154), how
ever, did not observe this pattern with regard to total folate 
intake. 

Slattery et al. (150) categorized subjects as consuming 
low-, intermediate-, and high-methyl diets. The lowest odds 
ratio was for subjects with the TT genotype consuming a 
high-methyl diet (OR for high-methyl and TT vs. low-methyl 
and CC = 0.4, 95 percent CI: 0.1, 0.9), while the odds ratios 
for subjects consuming a low-methyl diet did not vary by 
genotype (150). Consistent with this finding, Ma et al. (17) 
observed an increased risk among the folate deficient 
(plasma folate <3.0 ng/ml) irrespective of genotype. 

Two cancer studies found significant interactions between 
C677T and alcohol (17, 149). High intake abolished the 
reduced risk associated with the TT genotype to the extent 
that subjects with this TT genotype who consumed the 
largest quantities of alcohol were at the greatest risk of 
cancer (greater even than for those without the T allele who 
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were in the highest alcohol group). Keku et al. (154) found 
no interaction with alcohol but did not consider quantity, 
only whether subjects had “ever” or “never” consumed 
alcohol. 

High blood riboflavin levels may improve MTHFR 
activity in TT persons because the cofactor for MTHFR is a 
metabolite of riboflavin (171). Le Marchand et al. (54) 
observed the lowest relative risk for cancer among TT 
persons with the highest riboflavin intake. Genotype-folate-
riboflavin combinations were not considered. 

Little is published on gene-diet interactions and adenomas. 
In the two known studies, the stratum of highest risk 
comprised TT persons with the lowest red cell or plasma 
folate levels (160) or the lowest intakes of folate, 
methionine, vitamin B6, and vitamin B12 (159), but the gene
nutrient interactions were not statistically significant. With 
regard to alcohol and genotype, the pattern observed is 
similar to that for cancer (159, 160). 

MTHFR A1298C. Keku et al. (154) observed a significant 
interaction (p = 0.03) between total folate intake and 
A1298C genotype among White but not African-American 
subjects; fewer African-American subjects were involved in 
the study. Unlike the pattern for C677T, White 1298CC 
subjects who consumed less than 400 ng of folate per day 
had a greater reduced cancer risk than those whose folate 
intake was higher. No interactions were observed between 
A1298C and “ever” or “never” consuming alcohol. 

Two further studies of A1298C reported no significant 
interactions with blood levels or intake of folate or related 
nutrients and colorectal neoplasia (28, 54). The results were 
not shown. 

MTR. For cancer, Ma et al. (18) reported a significant 
interaction between MTR and alcohol intake (table 5); 
persons with the GG genotype consuming more than one 
drink a day had an increased disease risk (OR for GG and ≥1 
drink/day vs. AA and <1 drink/day = 2.64, 95 percent CI: 
0.65, 10.82), while those consuming less than one drink a 
day had a reduced risk (OR = 0.27, 95 percent CI: 0.09, 0.81; 
p for interaction = 0.04). There was also a nonsignificant 50 
percent risk reduction among GG subjects whose plasma 
folate levels were in the upper two tertiles compared with 
those with the same folate level and the AA/AG genotype; 
persons with the GG genotype in the lowest plasma folate 
tertile did not have a reduced risk (p for interaction = 0.22). 

MTRR and CBS.   Le Marchand et al. (54) reported no 
significant interactions between MTRR or CBS and dietary 
folate, vitamin B12, vitamin B6, riboflavin, or methionine. 
Results were not shown. 

TS. For adenomas, Ulrich et al. (102) found a statistically 
significant interaction between the tandem repeat polymor
phism and folate intake. Among 3 rpt/3 rpt persons, higher 
folate intake (>440 ng/day) was associated with a 50 percent 
reduced risk compared with lower folate intake. However, 
among 2 rpt/2 rpt persons, higher folate intake was associ
ated with a 50 percent increased risk (p for interaction = 
0.03). A similar pattern was observed for vitamin B12 intake 
(p for interaction = 0.08). No interactions were found with 
intakes of vitamin B6, methionine, or alcohol, nor were there 
interactions between the 3′ untranslated region polymor
phism and dietary variables. N
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TABLE 4.   Studies of the MTHFR* C677T genotype and hyperplastic polyps, with relative risks and 95% confidence intervals 

Study area 
Cases 

Type No. 

Comparison group 

Type No. % TT 95% CI 
Comparison 

Relative 
risk 95% CI* 

Adjustment 
factors 

Reference 
no. 

Norway Participants in Telemark I study; born 1924–1933; selected from population 162 
register in 1983 and randomly assigned to endoscopy or control group; 
799 participated; in 1996, offered colonoscopy and removal of polyps; 
results available for 443 participants (229 male, 214 female; median age, 
67 years) 

With “high-risk” 91 Without polyps 349 7.1 4.8, 10.1 TT/CT vs. CC 1.43† 0.87, 2.33 
hyperplastic polyps (n = 116) or 
(n ≥ 3) with adenomas 

or “low-risk” 
hyperplastic 
polyps (n = 233) 

United States: Subjects recruited from private gastroenterology practice undertaking 163 
Minneapolis, colonoscopies in 10 hospitals; underwent colonoscopy in 1991–1994; 
Minnesota English speaking; without known genetic syndromes predisposing to 

colorectal cancer; no history of cancer or inflammatory bowel disease; 
aged 30–74 years 

Diagnosis of colon or 200 Free of all polyps 645 11.0 8.7, 13.7 TT vs. CC 0.9 0.5, 1.6 Age, sex, body 
rectal hyperplastic at colonoscopy; mass index, 
polyps; 97% White; 97% White; 38% use of 
57% male; mean male; mean hormone 
age, 53.7 years age, 52.8 replacement 

(standard therapy, 
deviation, 10.9) smoking, 
years percentage 

of calories 
from fat, 
dietary fiber, 
folate, 
vitamin B12, 
vitamin B6, 
methionine, 
alcohol 

CT vs. CC 0.8 0.6, 1.2 

* MTHFR, methylenetetrahydrofolate reductase; CI, confidence interval. 
† Unmatched odds ratio, computed by Sharp and Little from data in the paper. 

Gene-gene interactions 

Metabolism of any exposure is likely to depend on the 
balance between the relative activities of all of the enzymes 
active within the metabolic pathway (172). So far, we know 
of two studies that have considered joint effects of folate
pathway genes (54, 102; table 5). 

For cancer, Le Marchand et al. (54) observed that the 
MTHFR T allele had the greatest effect among subjects with 
the MTR G allele (OR for CT/TT and AG/GG vs. CC and AA = 
0.7, 95 percent CI: 0.5, 1.0; p for interaction = 0.05). Consid
ering MTHFR C677T and CBS, they reported that the group 
with both variants appeared to be at reduced risk; however, 
this result was based on small numbers, and the interaction 
was not significant. Meanwhile, MTRR did not interact with 
MTHFR C677T. 

For adenomas, Ulrich et al. (102) investigated interactions 
between C677T, TS tandem repeat, and folate intake. The 
association of higher folate intake with reduced risk among 3 
rpt/3 rpt subjects was not modified by MTHFR. The 
increased risk associated with lower folate intake in TT 
subjects appeared limited to 3 rpt homozygotes. These find
ings were not statistically significant. 

Comments on studies of gene-disease associations and 
interactions 

Some of the heterogeneity in the findings with regard to 
the genotype main effects is likely to be due to differences 
between the populations studied in average levels of intake 
of folate, alcohol, and related dietary factors. If there truly 
are interactions between genotype and folate, for example, 
they may be seen only in populations with high or low folate 
levels (depending on the direction of the interaction). Such 
an effect has recently been observed for MTHFR C677T and 
coronary heart disease (158). 

Methodological factors are also important. Five cancer 
studies (17, 56, 149, 151, 152) and four adenoma studies (76, 
152, 161, 162) each included fewer than 300 cases and thus 
had limited statistical power, particularly for subgroup and 
interaction analyses. The nonprospective studies are most 
susceptible to bias. Some were not population based. In 
some, it is not clear whether the controls came from the 
population that gave rise to the cases. In others, the case 
series were limited to subjects still alive to provide a DNA 
sample (prevalent cases), which would have resulted in bias 
if any of the genotypes were associated with survival 
(currently not known). Few studies provided information on 
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participation rates, making it difficult to assess bias and 
generalizability. It is likely that a proportion of the controls 
in the cancer studies may have been harboring undiagnosed 
polyps. Depending on the relations between each polymor
phism and adenomas, this may have introduced random error 
or bias. The presence of undetected polyps among controls 
would not be important if the genotype was etiologically 
relevant only after an adenoma had developed, as seems 
likely for MTHFR C677T. For the other genotypes, it is not 
clear at what stage in the adenoma-carcinoma sequence they 
may be relevant. Finally, the possibility cannot be 
discounted that the findings do not reflect an association 
between the specified polymorphisms and colorectal 
neoplasia but rather are a consequence of linkage disequilib
rium. 

LABORATORY TESTS 

MTHFR C677T and A1298C are detected by means of 
DNA amplification using polymerase chain reaction 
followed by restriction fragment length polymorphism anal
ysis; HinfI for C677T and MboII (12) for A1298C (10, 11) 
are used. The MTR and MTRR polymorphisms and the 3′ 
untranslated region variant in TS are also detected by restric
tion fragment length polymorphism, with digestion with 
MaeII for MTR, with NdeI or AflIII for MTRR, and with DraI 
for TS (4, 5, 48, 54). The TS tandem repeat and CBS insertion 
are detected by DNA amplification and visualization on 
agarose gels (46, 97). 

Most studies did not report the success rate in extracting 
DNA from samples, the proportion of eligible subjects for 
whom genotyping failed, or the degree of genotyping repro
ducibility, all of which are important indicators of the analyt
ical validity of genotyping (173). 

Laboratories are increasingly using high-throughput geno
typing methods, an area of considerable development and 
innovation. Although quality control and analytical validity 
in this context are important (173), published data are 
currently lacking. 

POPULATION TESTING 

Companies in the United States and the United Kingdom 
are offering consumer tests for genotypic or phenotypic 
markers of polymorphisms influencing nutrient metabolism, 
including MTHFR (174, 175). However, the scientific 
evidence currently is not strong enough to advocate popula
tion testing for any polymorphisms reviewed here. 

Testing for these polymorphisms might be valuable in 
cancer patients. 5-Fluorouracil, commonly used in colorectal 
cancer chemotherapy, is a thymidylate synthase inhibitor 
and can cause severe folate depletion. Knowledge of patient 
genotype could be used to tailor chemotherapy regimes to 
1) minimize toxicity and side effects, thus improving quality 
of life, and/or 2) increase the effectiveness of treatment and 
ultimately lengthen survival. So far, evidence in this area is 
limited to the TS tandem repeat and MTHFR C677T. Among 
51 stage III colon cancer patients treated with 5-fluorouracil 
and leucovorin (folinic acid), presence of the MTHFR T 

allele had little effect on probability of death or length of 
survival in those who had died, except in 12 patients with 
rectosigmoid colon cancer (176). In a study of 365 nonadju-
vant-treated patients, the TT genotype was associated with 
improved survival, but this result did not persist after adjust
ment for disease stage (98). 

For TS, some (177–179) but not all (180, 181) studies of 
colorectal cancer patients concluded that higher TS tumor 
expression levels were related to shorter survival. Consistent 
with this finding, one genotype study suggested that carrying 
the 3 rpt allele increased risk of death (179). Four studies of 
genotype and response to 5-fluorouracil (182–185) 
suggested that 2 rpt/2 rpt patients may be more responsive to 
therapy but subject to greater toxicity (186). Most of the 
studies (of genotype or phenotype) have been small, 
included selected patient groups, and made limited adjust
ment for potentially important factors. 

CONCLUSIONS AND RESEARCH PRIORITIES 

The observed association of the MTHFR homozygous 
variant genotypes with reduced carcinoma risk was the 
opposite of what might have been expected a priori. This 
finding has led investigators to reconsider the folate metabo
lism pathway, putting a greater emphasis on the functions of 
folate and MTHFR in DNA synthesis. The evidence is 
compatible with interactions between MTHFR genotype and 
folate, alcohol, and/or related nutrients in relation to 
colorectal cancer. Evidence on polymorphisms other than 
MTHFR C677T is extremely limited. The associations 
observed between MTR, CBS, MTRR, and TS genotypes and 
colorectal neoplasia are tentative at best and require replica
tion. The few studies of combinations of polymorphisms 
suggest the possibility of gene-gene interactions; again, 
further investigation is needed to confirm initial findings. 
Altogether, the evidence suggests that the roles of folate
metabolizing genes, folate, and related dietary factors in 
colorectal neoplasia are complex. Methodologies are 
currently lacking for specification of hypotheses, clarifica
tion of functional effects, and statistical analysis relating to 
such complex gene-environment pathways. This area of 
research must be a priority if advancements in understanding 
of disease etiology are to be achieved. Table 6 lists other 
areas for further research. 
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TABLE 5.  Continued 

Gene-disease associations 

Gene Polymorphism Study area, study 
design, cases† Comparison Relative 

risk 
95% CI* 
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Reference 
no. 
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TABLE 6.   Research priorities 
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APPENDIX. Internet sites pertaining to folate metabolism and colorectal neoplasia 

Data on cancer incidence, survival, and mortality 

International Agency for Research on Cancer (IARC)—Cancer Mondial: 
http://www-dep.iarc.fr/dataava/infodata.htm 

Surveillance, Epidemiology, and End Results (SEER) Program: 
http://www.seer.cancer.gov/publicdata/ 

National Program of Cancer Registries (NPCR): 
http://www.cdc.gov/cancer/npcr 

Information on cancer 

Cancer Research UK: 
http://www.cancerresearchuk.org/ 

National Cancer Institute—cancer.gov: 
http://www.nci.nih.gov/ 

American Cancer Society: 
http://www.cancer.org/docroot/home/index.asp 

Genetics information 

Human Genome Epidemiology Network (HuGENet): 
http://www.cdc.gov/genomics/hugenet/default.htm 

Public Health Genetics Unit: 
http://www.medschl.cam.ac.uk/phgu/ 

Online Mendelian Inheritance in Man (OMIM): 
http://www3.ncbi.nlm.nih.gov/Omim/searchomim.html 

GenAtlas: 
http://www.dsi.univ-paris5.fr/genatlas 

GeneCards: 
http://www.cgal.icnet.uk/genecards 

National Center for Biotechnology Information: 
http://www.ncbi.nlm.nih.gov/ 

UK Human Genome Mapping Project (includes links to other sites via The Genome Web): 
http://www.hgmp.mrc.ac.uk/ 
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